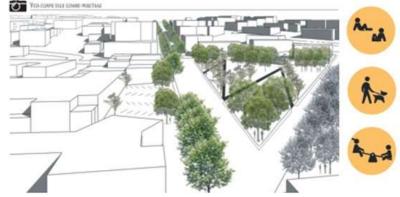
Conferencia Projecto Fondecyt "Clima urbano y medio construido" *Prof. Massimo Palme*


Green Infrastructure for urban cooling: high-resolution scenarios based on urban morphology and environmental predictor model

Daniele La Rosa

Department of Civil Engineering and Architecture **University of Catania, Italy**

Co-funded by the Erasmus+ Programme of the European Union

outline

Basic definition of Green Infrastructure

Mechanisms beyond cooling effects of vegetation

Modelling the potential of urban vegetation trees to increase the thermal comfort of urban environments

Defining greening scenarios for contemporary urban environments based on actual urban morphology

Basic Definitions

"Interconnected network of natural areas and open spaces that conserves natural ecosystem values and functions, sustains clean air and water, and provides a wide array if benefits to people and wildlife" (Benedict, McMahon, 2006)

Some differences between GI and Greenways (Walmsey, 2006) •Ecology versus Recreation—Green infrastructure emphasizes ecology, not recreation

•Bigger versus Smaller—Green infrastructure includes large, ecologically important 'hubs' as well as key landscape linkages

•Framework for Growth—Green infrastructure can shape urban form and provide a framework for growth. It works best when the framework pre-identifies both ecologically significant lands and suitable development areas." (Benedict and McMohan, 2002b, p. 13)

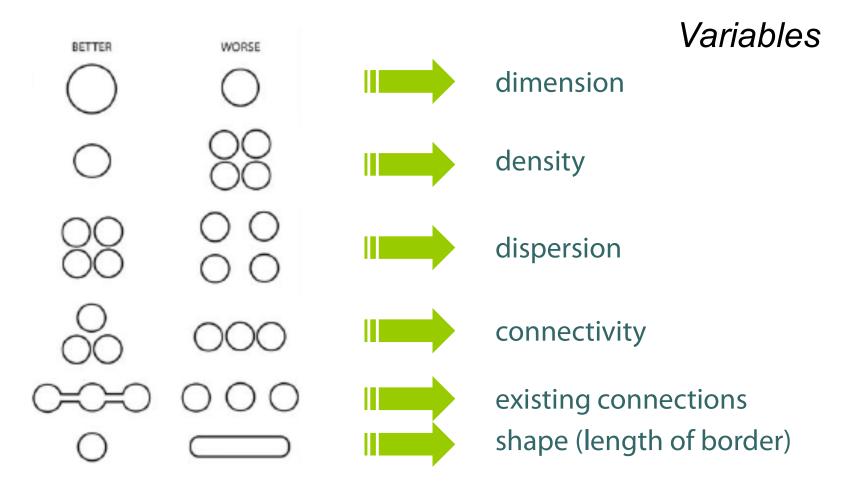
More emphasis on production of services to communities

The Green Infrastructure approach

'An interconnected network of natural areas and other open spaces that conserves natural ecosystem values and functions... and provides a wide array of benefits for people and wildlife'.

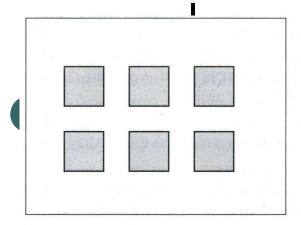
BENEDICT, M. & MCMAHON, E., 2006. Green Infrastructure: linking landscapes and communities, London, England, U.K., Island Press. (page 1). '...a strategically planned **network** of high quality **natural and semi-natural a r e a s** with other environmental features, which is designed and managed to deliver a wide **range of ecosystem services and protect biodiversity** in both rural and urban settings.'

EUROPEAN COMMISSION, 2013. Building a Green Infrastructure for Europe, Luxembourg, Publications Office of the European Union (page 7).

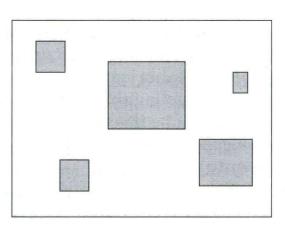

Two mainstreams where the **Green Infrastructure concept has** developed from

a) ecological
 b) economical

Landscape Ecology	Ecological Economics
Landscape Ecology, Forman & Godron (1986)	Georgescu-Roegen (1971), The Entropy Law and the Economic
Land Mosaics, Forman (1995)	Process
(1996)	Costanza (1997), The value of the world's ecosystem services
Quantitative Landscape Ecology	and natural capital
"del post Fragstats" di M. Turner, K.	Key aspect:
Riittare Navah (NN iae)	Natural Canital & Ecosystem

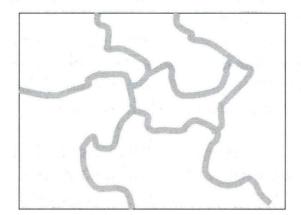

General Design principles for GI

Principles for the design of GI

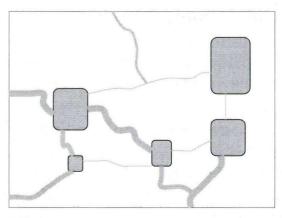


Adapted from Noss and Cooperrider (1994).

General Design principles for GI



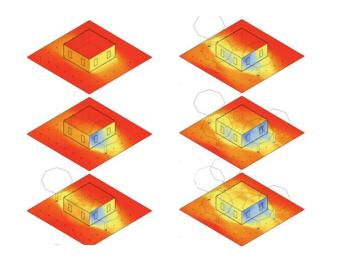
Aree verdi isolate

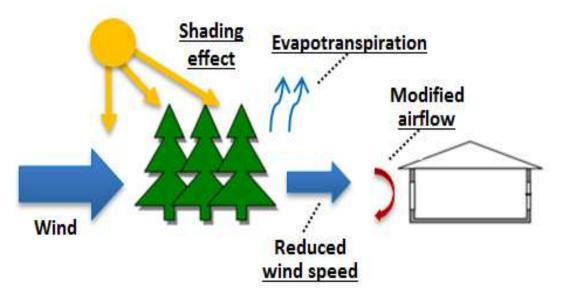


Aree verdi con diversa funzione e dimensione

Evolution of green space in modern planning (Turner T., 1991, in 'Towards a green strategy for London')

Corridoi verdi


Trama verde (aree + collegamenti)

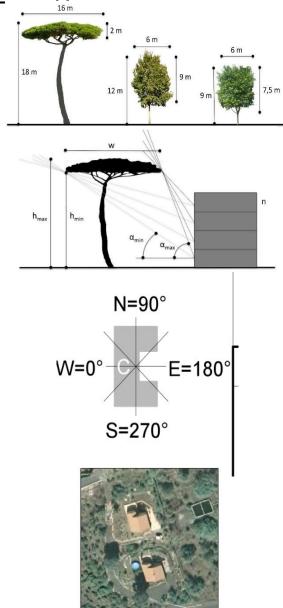

Green Infrastructure for urban cooling

Green Infrastructure provides beneficial microclimatic effects, including air temperature reduction, which eases the UHI effect and therefore the buildings' energy consumptions.

Processes generating microclimatic beneficial effects

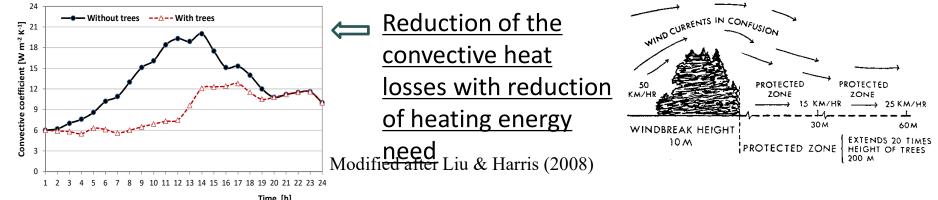
- 1. Shading of solar heat gains on windows, walls, roofs, and other surfaces
- 2. Wind-breaking effect of trees
- 3. Evapotranspiration processes

Shading effect


Most important effect, depending on the following variables

trees species and related parameter (height, canopy width, age, ...)

Distance of trees from buildings


Shape and orientation of orientations of buildings

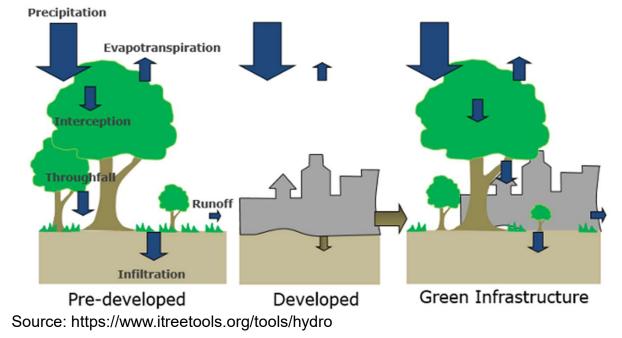
Climate conditions

Wind-breaking effect of trees

- slow down the wind close to the buildings and reduce the convective heat losses and the infiltration rates
- particularly relevant in windy, cold and frequently overcast sites.

Best-practice management/design rules:

- the ideal arrangement of shelterbelt trees is perpendicular to the prevailing wind;
- shelterbelt trees should have a medium porosity (about 40%) so as to provide satisfactory wind speed reduction over a long distance;
- shrubs should be planted at the basis of the trees, to avoid any vertical gaps occurring in the shelterbelt;
- Trees to planted along the entire length of the building.

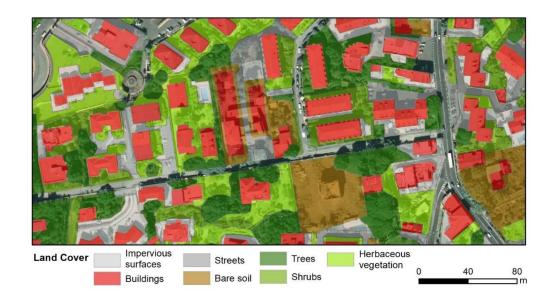

Evapotranspiration processes

Reduction in the dry-bulb temperature due to evapotranspiration, as the loss of water from a plant as a vapour into the atmosphere (Givoni, 1991).

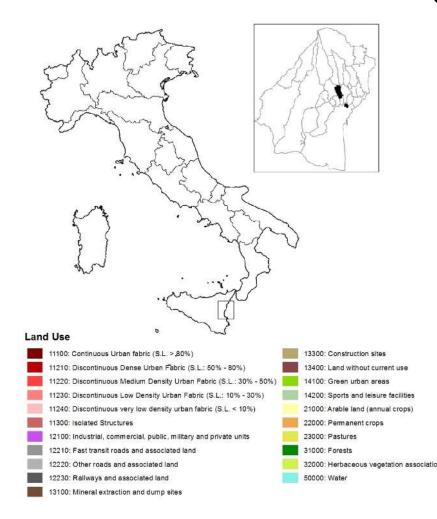
Less relevant than previous processes in terms of generated energy reduction

A reduction in the cooling needs and an increase in the latent cooling needs of buildings can be observed

Spatial extent of this reduction can be limited to some meters from the trees



Role of urban morphology

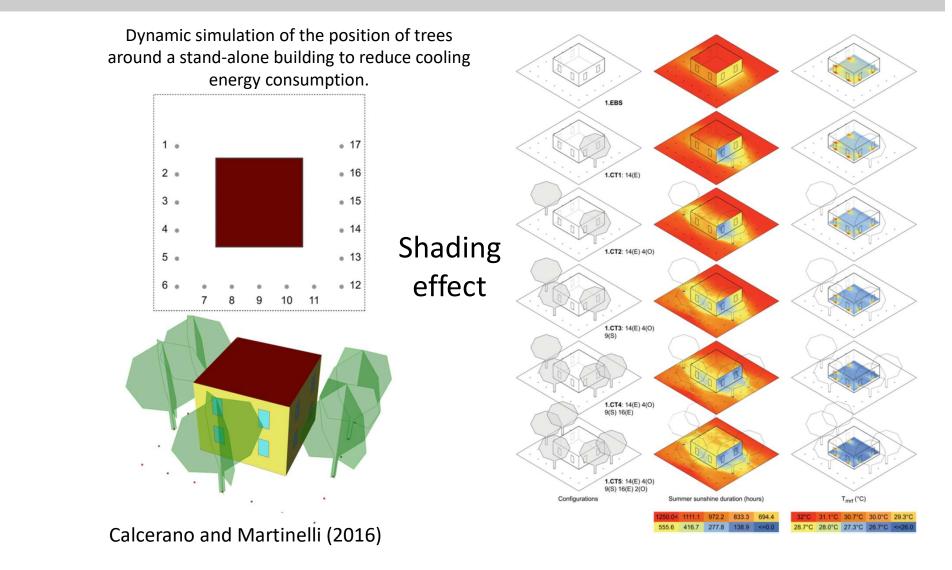

Urban morphology involves relationship among the primary elements of urban fabric such as plot, street, constructed space and open space (Levy, 1999)

All these features and their spatial configurations strongly influence the urban climate, heat island (Palme et al., 2020)

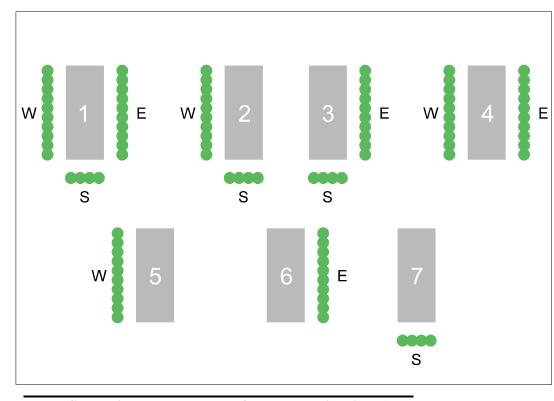


Example from Italy

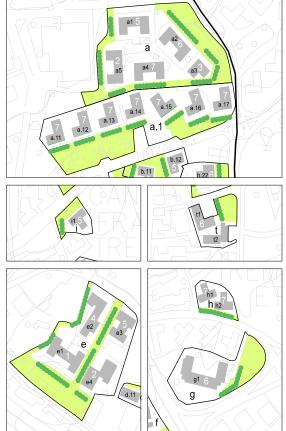
A portion of the Metropolitan area of Catania



- **O** Lack of greenspaces
- O High seismic vulnerability of existing urban fabric
- **O** Low energy efficient building stock

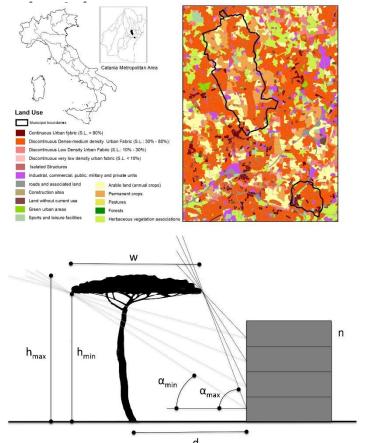

Results - Potential local cooling effect of vegetation

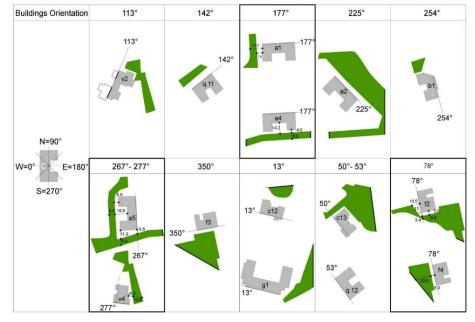
and relative building energy demand reduction


Results - Potential local cooling effect of vegetation

and relative building energy demand reduction

Configuration #	Range of energy reduction (%)
1 (E+S+O)	44.4 - 48.5
4 (E+O)	37.3 – 41.8
5 (O)	10.4 – 13.6
6 (E)	19.2 – 21.2

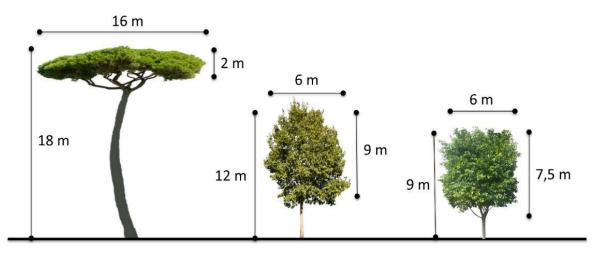

Energy saving ranging from a minimum of 11% when locating 1 only tree to a maximum of 44% when locating 5 trees around buildings: a limited amount of greenery is able to achieve relevant energy savings



Building simulations (shading effects)

With TRNSYS v.17 we simulated the shading effect of trees that can be located in the shared open spaces close to the buildings and following **different spatial configurations identified in a morphological analysis of the urban environment**.

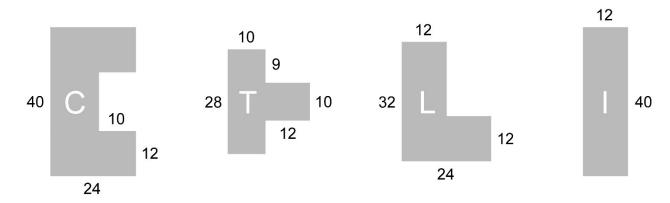
A portion of the Metropolitan area of Catania

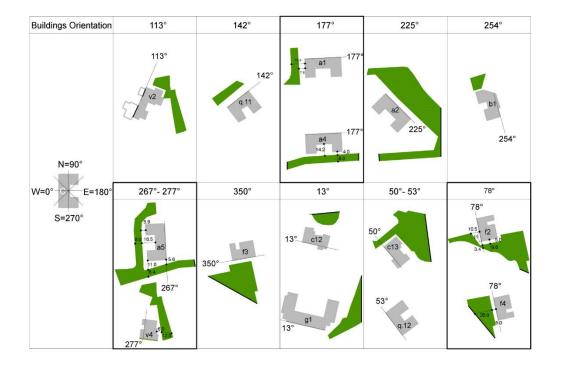

patches of multi-storey apartment buildings with available open spaces

Evaluating impact of height of trees and distance from the buildings

Building simulations (shading effect)

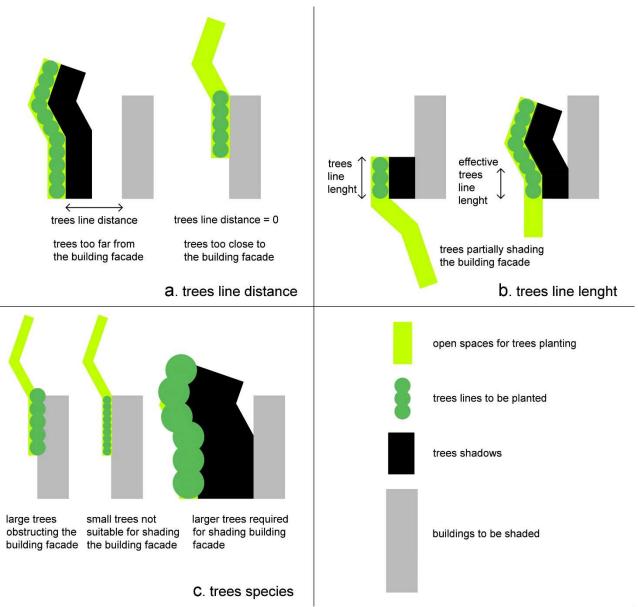
Building simulations to evaluate the effect of shading on energy demands of building, considering the influence of different variables involved

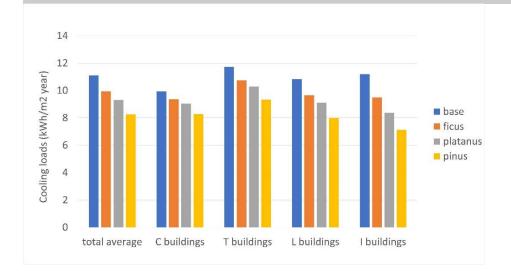

Investigated types of buildings

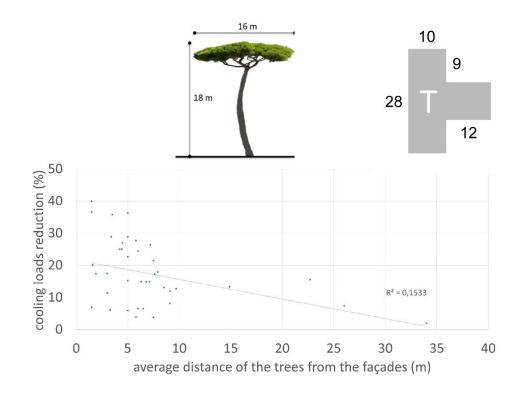

Investigated tree species:

Pinus Pinaster, Platanus Occidentalis Ficus Benjamina.

Building simulations (shading effect)


Investigated types of buildings




Building simulations (shading effect)

Distance configurations from trees to buildings

Building simulations - results

Cooling loads grouped by building type and trees species

- cooling loads of buildings were reduced from 11.1 kWh/m2year to 9.2 kWh/m2year (17.3% reduction)
- Overall Pinus Pinaster performs better results than Platanus Occidentalis or Ficus Benjamina
- T-buildings have better behaviors

Results by distance between trees and buildings

- Higher distances reduce the positive contribute of shadows
- Overall, 5-8 meters as optimal distance

Simulating the effects of GI – other approaches

Environmental Modelling & Software Volume 99, January 2018, Pages 70-87

Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services

Fredrik Lindberg ^a 凡 ၊ C.S.B. Grimmond ^b 凡 ၊ Andrew Gabey ^b, Bei Huang ^{b, c}, Christoph W. Kent ^b, Ting Sun ^b, Natalie E. Theeuwes ^b, Leena Järvi ^d, Helen C. Ward ^{b, e}, I. Capel-Timms ^b, Yuanyong Chang ^f, Per Jonsson ^g, Niklas Krave ^{a, b}, Dongwei Liu ^f, D. Meyer ^b, K. Frans G. Olofson ^a, Jianguo Tan ^h, Dag Wästberg ^g ... Zhe Zhang ^{b, j}

Integrated in QGIS

<u>UMEP Manual — UMEP Manual</u> <u>documentation (umep-</u> <u>docs.readthedocs.io)</u>

Building and ground DSM: Use continuous meterological distance: Irput meteorological distance: Irput meteoro							ological						Spatial data
Skylewfactor grids (z.g): Use vegetation scheme (Lindberg, Grimmond 2011) Transmissivity of light as the vegetation Canopy DSM: Transmissivity of light as the vegetation Truck zone DSM: Transmissivity of light as the vegetation Truck zone DSM: Transmissivity of light as the vegetation f(%): Use land cover scheme (Lindberg et al. 2016) Use land cover grid: Use land cover grid to derive building grid Ground DEM: Wall aspect raster: Wall height raster: Wall height raster: Wall height raster: Wall height raster: Therr parameters Absorption of fortwave radiation: 0,70 to Pesture of the body: Standing PET parameters Absorption of longwave radiation: 0,70 to Pesture of the body: Standing PET parameters Absorption of longwave radiation: 0,70 to Pesture of the body: Standing PET parameters Absorption of longwave radiation: 0,70 to Standow maps (rnpz) PET parameters Absorption of longwave radiation: 0,70 to Standow maps (rnpz) Standow maps (rnpz) Standow maps (rnpz) Sta	10 F 1					000720505		U Use con		nd ground DSM:	Building a		
Use vegetation scheme (Lindberg, Grimmond 2011) □ truck zone DSM exist Vegetation Canopy DSM: □ truck zone DSM Vegetation Truck zone DSM □ truck zone DSM Vegetation Truck zone DSM: □ truck and cover scheme (Lindberg et al. 2015) UMEP land cover grid: □ truck and cover grid Ground DEM: □ truck and cover grid to derive building grid Ground DEM: □ true anisotropic model for diffuse radation (Wim?): 92.0 □ true anisotropic model for diffuse radation (Vim?): 92.0 □ true anisotropic model for diffuse radation (Vim?): 92.0 □ true anisotropic model for diffuse radation (Vim?): 92.0 □ true anisotropic model for diffuse radation (Vim?): 92.0 □ true anisotropic model for diffuse radation (Vim?): 92.0 □ true anisotropic model for diffuse radation: 0.70 € Absorption of ongrave radiation: 0.70 € □ true anisotropic model for diffuse radation: 0.70 € □ true anisotropic model f	Select								S				kyViewFactor grids (.zip):
Use vegetation scheme (Lindberg, Grimmond 2013) Trunk zone DSM exist Vegetation Canopy DSM: Save generated Trunk zone DSM Transmissivity of light Save generated building grid Global radiation (Wm?): Save generated building grid Global radiation (Wm?): Wall aspect raster: Make or point file: Absorpt		ition:	obal radiatio		ICALINEDOWN SUITE	ect shortw	fuse and dire						
Intrusk zone DSM exist Vegetation Canopy DSM: Save generated Trusk zone DSM Vegetation Trusk zone DSM Transmissivity of light Percent of canopy height: 25 16 10 be land cover scheme (Lindberg et al. 2015) UMEP land cover grid: Ube land cover grid to derive building grid Ground DEM: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall height raster: Wall aspect raster: Wall aspect raster: Wind gend Baborption of fabritwave radiation: 0,70 \$ Absorption of fabritwave radiation: 0,70 \$ <td>e</td> <td>5.4</td> <td>5.4</td> <td>In case of the</td> <td>The second se</td> <td>T</td> <td>Maria</td> <td>9</td> <td></td> <td></td> <td>)</td> <td>(Lindberg, Grimmond 2011)</td> <td>Use vegetation scheme (Lind</td>	e	5.4	5.4	In case of the	The second se	T	Maria	9)	(Lindberg, Grimmond 2011)	Use vegetation scheme (Lind
Save generated Truck zone DSM Vegetation Truck zone DSM: Transmissivity of light Percent of canopy height Transmissivity of light Percent of canopy height Use land cover scheme (Lindberg et al. 2016) UMEP land cover grid: Use land cover grid to derive building grid Ground DEM: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall height raster: Wall be anisotropic model for diffuse radiation (Introduction in v2019e) Shadow maps (np2) PET parameters Absorption of shortwave radiation: 0,70 € Absorption of shortwave radiation: 0,70 € Absorption of body: Standing Standing Sex:								22		n Canony DSM:	Venetati		Trunk zone DSM exist
Save generated Truk zone DSM Vegetation Truik zone DSM: Image: space generated Truk zone DSM: Image: space generate											regette		
Transmissivity of light Image: canopy height 25 16 17 18 19 20 21 25 16 17 18 19 20 21 26 23 24 25 26 27 28 27 30 1 2 3 4 5 Air temperature (degC): 23.0 E Water temperature (degC): 23.0 E Environmental parameters Emsionity (walls): 0.0 E Albedo (wall Emsionity (walls): 0.0 E Albedo (wall Emsionity (walls): 0.0 E Weight (dog: 5.0 E Activity (W): Bootran of flor diffuser adlation: 0.7 E PET parameters Age (w): <										runk zone DSM:	Vegetation	one DSM	Save generated Trunk zone
26 23 24 25 26 27 28 10 be land cover grid to derive building grid Ground DEM: Image: Constraint of the cover grid to derive building grid Water temperature (degC): 23,0 Image: Constraint of the cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Wind sensor height (mours) Wall aspect raster: Image: Cover grid to derive building grid Water temperature (degC): 23,0 Image: Cover grid to derive building grid Image: Cover grid to derive building grid Wind sensor height (mours) Wall height raster: Image: Cover grid to derive building grid Image: Cover grid to derive building											3	nsmissivity of light	Transm
Use land cover scheme (Lindberg et al. 2016) UMEP land cover grid: 27 30 1 2 3 4 5 Use land cover grid to derive building grid Ground DEM: Image: Construction of the scheme (Lindberg et al. 2016) Water temperature (degC): 23,0 Image: Construction (Lindberg et al. 2016) Water temperature (degC): 23,0 Image: Construction (Lindberg et al. 2016)										hopy height:	- G	n vegetation (%):	through ve
Use and cover scheme (underg et al. 2015) Water temperature (degC) Use land cover grid to derive building grid Ground DEM: Save generated building grid Wind speed (m/s) Wall aspect raster: Wild aspect raster: Wall height raster: Wild height raster: Bisorytopic model for diffuse radiation (Introduction in v2019a) Environmental parameters Hart parameters Absorption of shortwave radiation: 0,70 C Absorption of shortwave radiation: 0,70 C Activity (W): 50,0 C Activity (W): So,0 C + Height (cm):						202	20200						
Use land cover grid to derive building grid Ground DEM: Image: Constraint of the speed (m/s) Save generated building grid Wal aspect raster: Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) Wal aspect raster: Image: Constraint of the speed (m/s) Bio.0 Image: Constraint of the speed (m/s) I Use anisotropic model for diffuse radiation (Introduction in v20 19a) Image: Constraint of the speed (m/s) Emissivity (walls): 0,90 Image: Constraint of the speed (m/s) I Hadow maps (mp2) Absorption of fl	gC): 15,0	ture (deaC)	er temperati	Water	•	23.0	ature (deoC):	Air tempera		over grid:	UMEP land o	(Lindberg et al. 2016)	Use land cover scheme (Lind
Save generated building grid Global radiation (W/m): 80.0 \$ Wind sensor height (m) Wall aspect raster: Wild sensor height (m) Wind sensor height (m) Wall aspect raster: Wild height raster: Wild beight raster: Wall height raster: Wild height raster: Wild beight raster: Wall aspect radiation (Introduction in v2019a) Besch Dutput maps I use anisotropic model for diffuse radiation (Introduction in v2019a) Select Dutput maps I use anisotropic model for diffuse radiation (Introduction in v2019a) Select Dutput maps I mark parameters Emissivity (ground): 0.95 \$ Albedo (ground) I mark parameters Age (ry): Select Diffuse radiation: Posture of the body: Standing Pet parameters Indude POI(s) Vector point file: ID field: ID field: ID field: ID field: ID field:				Works	Local B	-	00000000000000000			und DEM:	Gro	erive building grid	Use land cover grid to derive
Wall aspect raster: Wall aspect raster: Wall aspect raster: Wall height raster: Wall height raster: Select Participation of shortwave radiation (Introduction in v2019a) Height (hight ? 75,0 ° Activity (W): Bo,0 ° + Height (cm): Bo ° Activity (W): Bo,0 ° + Height (cm): Bo ° D field: ID field: Un field:					Contract of Contra					1		ı arid	Save generated building grid
Wall aspect raster: Wall aspect raster: Wall height raster: Wall height raster: Wall height raster: Select Diffuse radiation (Win?): 92,5 © Emissivity (walls): 0,90 © Kdown Ldown Lup Shadow Fract parameters Age (vy): Absorption of shortwave radiation: 0,70 © Activity (W): 80,0 © + Height (cm): 180 © Cothing (do): 0,90 © Sex: Male wi					home of the second s	-							
Wall height raster: Environmental parameters Use anisotropic model for diffuse radiation (Introduction in v2019a) Select Dutput maps Emissivity (walls): 0,90 C Albedo (walk hadow maps (.npz) Select Weight (kg): 75,0 C Emissivity (ground): 0,95 C Albedo (ground): Primer parameters Absorption of shortwave radiation: 0,70 C Activity (W): 80,0 C Height (cm): 180 C Posture of the body: Standing Sex: Sex: 180 C Use the sexivity according to Jonsson et al. (2005)					NUMBER						144		
Use anisotropic model for diffuse radiation (Introduction in v20 19a) Output maps Environmental parameters Image: Integration of shortwave radiation: (0,95) Select Output maps Emissivity (walls): (0,90) Albedo (walk Emissivity (walls): (0,95) Pesture of the body: Standing PET parameters Activity (W): (80,0) Height (cm): (180) Optional settings Include POI(s) Vector point file: Include POI(s) Vector point file: Include POI(s) Include POI(s) Sex: Include POI(s): Vector point file: Include POI(s)	time: 12:30	andard time	Local star		÷	92,5	tion (W/m²):	Diffuse radii		aspect raster:	VV-		
Use anisotropic model for diffuse radiation (Introduction in v20 19a) Image: Time to the point of the point of shortwave radiation: 0,70 € Select Image: Time to the point of shortwave radiation: 0,70 € Absorption of shortwave radiation: 0,95 € Include POI(s) Vector point file: Posture of the body: Standing Select Image: Conting (do): 0,95 € Include POI(s) Vector point file: Individe the point of the body: Standing Select Adjust sky emissivity according to Jonsson et al. (2005)				and all as				Ortent		ll height raster:	W		
Use anisotropic model for diffuse radiation (Introduction in v2019a) hadow maps (.npz) Select Kdown Lup Shadow Emissivity (ground): 0,95 the labelo (Sector Sector	1.5					
hadow maps (.np2) Select Lup Shadow Image: Linus Hy (global); (0,35) (0,00); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,0); (0,35) (0,			former!				and the second s				uction in v2019a	or diffuse radiation (Introdu	Use anisotropic model for dif
THRET parameters Absorption of shortwave radiation: 0,70 ° Absorption of shortwave radiation: 0,95 ° Absorption of the body: Standing Posture of the body: Standing Sex: male	bund): 0,15	edo (ground	Alber	nd): 0,95	sivity (grour	Emis			S				hadow maps (.npz)
Absorption of shortwave radiation: 0,70 Age (yy): 35 Weight (top): 75,0 Indude POI(s) Vector point file: ID field: ID field: Sex: male 											10.1		
Absorption of shortwave radiation: 0,70 (c) Age (yy): 35 (c) Weight (kg): 75,0 (c) Absorption of longwave radiation: 0,95 (c) Activity (W): 80,0 (c) Height (cm): 180 (c) Clothing (do): 0,96 (c) Sex: male						as	al settin	Option	rs	PET parameter		i i	MRT parameters
Absorption of longwave radiation: 0,95 C Posture of the body: Standing Clothing (do): 0,90 C Sex: male Clothing (do): 0,90 C Sex: male Clothing (do): 0,90 C				a lat film	Mashara		oclude POT(c)	•	♥ Weight (kg): 7	Age (vv): 35	0.70		- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199
Posture of the body: Standing Clothing (do): 0,90 Sex: male Adjust sky emissivity according to Jonsson et al. (2005)				pornt met	vector (icidue POI(S)				0.95	tion of longwave radiation:	Absorption
Sex: male V Adjust sky emissivity according to Jonsson et al. (2005)				ID field:					A Construction of the		L		
			R. I.	et al. (2005)	to Jonsson e	according	ky emissivity	Adjust s				c body. Standing	rostare of the be
					ead of box	ylinder inst	human <mark>a</mark> s cy	Consider		Sex. Indle			
Atout folder:	Run								Calast		Start 1		thut folder:

Outdoor Thermic Comfort

Depending on:

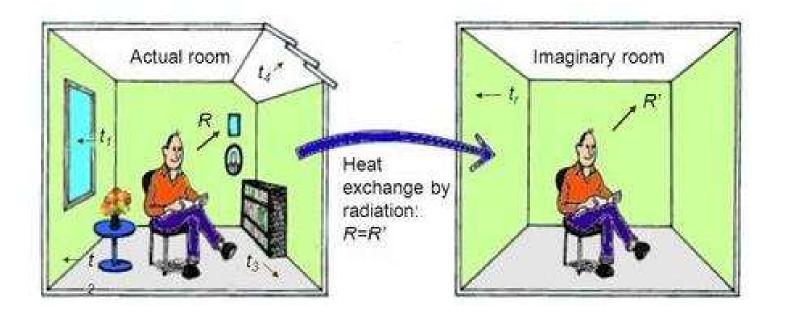
Climate parameters

Mean Radiant Temperature (MRT)

"Have R

Reflected Radiaban

Mean Radion Temperature >>>


- Wind speed
- Umidity
- Air Temperature

<u>Subjective</u> parameters

- Degree of Activities
- Clothing
- Personal sensitivity

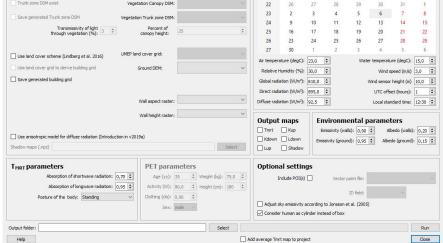
Outdoor Thermic Comfort

Mean Radian Temperature

"the uniform temperature of an imaginary enclosure in which the radiant heat transfer from the human body is equal to the radiant heat transfer in the actual nonuniform enclosure"

Simulating and predicting TMR

Urban Multi-scale Environmental Predictor (UMEP)

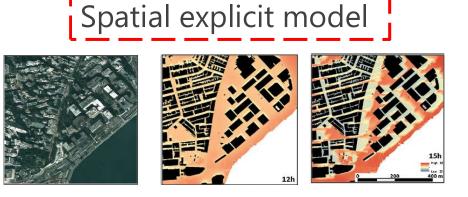

Spatial data

SkyViewFactor grids (.zip):

Like venetation echame (Lindhern, Grimmond 2011

a climate tool, presented as a plugin for <u>QGIS</u>, designed for a variety of applications related to outdoor thermal comfort, urban energy consumption, climate change mitigation, etc.

UMEP consists of a coupled modelling system which combines "state of the art" 1D and 2D models related to the processes essential for scale independent urban climate estimations.

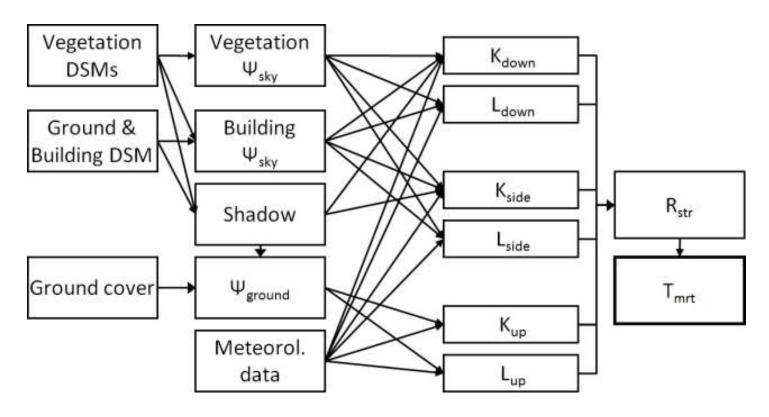


Select

Building and ground DSM

Meteorological data

UMEP


Simulating and predicting TMR

Urban Multi-scale Environmental Predictor (UMEP)

Module Solweig

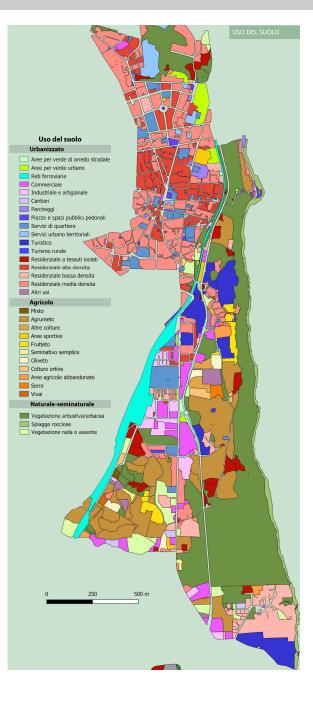
A model which can be used to estimate spatial variations of 3D radiation fluxes and **mean radiant temperature** (Tmrt) in complex urban settings. (Höppe, 1992).

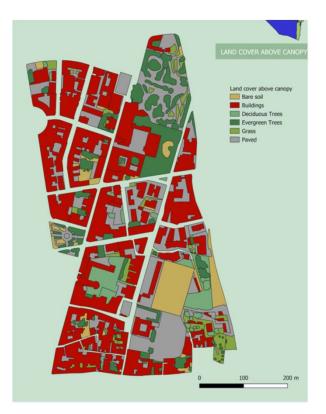
Simulating the effects of GI – other approaches

Ficarazzi (satellite)

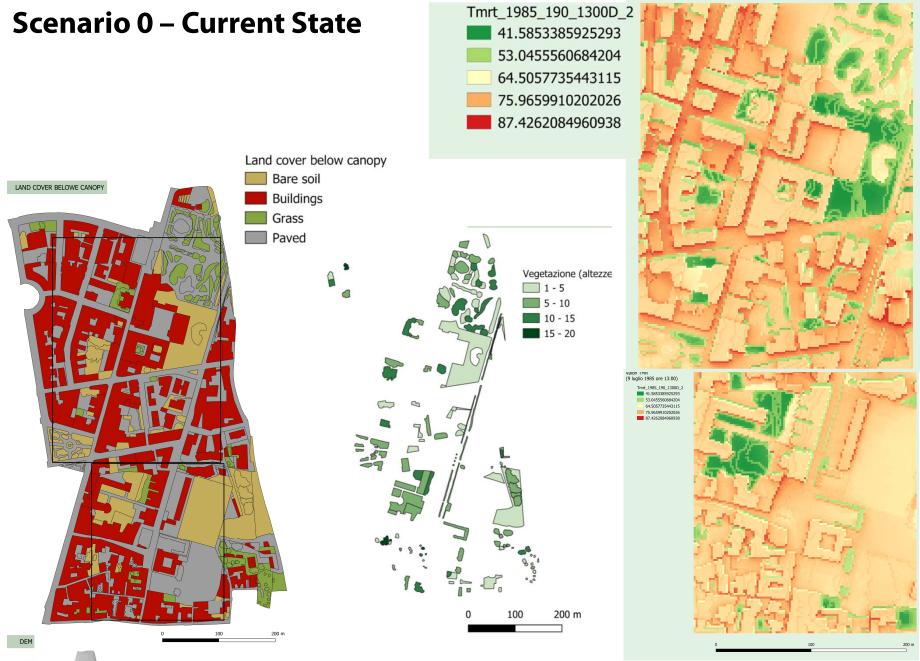
Mappa TMR (ore 11.00)

Mappa TMR (ore 17.00)


Mappa TMR (ore 14.00)


tmr (°C)
<= 35
35 - 40
40 - 45
45 - 50
50 - 55
55 - 60
60 - 65
65 - 70
70 - 75
75 - 80
80 - 85
> 85

Case study in high dense urban context


Acireale (Italy)

Simulating TMR

Simulating TMR – greenery scenarios

Scenario 1: maximization of greenery, high costs, maximum espected effect <u>Localization criteria</u>:

- beside buildings' facades
- *in public spaces/parking areas*
- *in private courtyards*

Simulating TMR – greenery scenarios

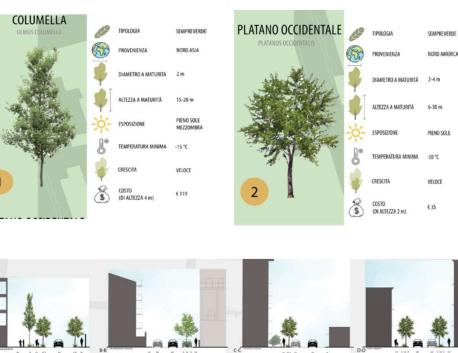
Scenario 2: Half of the area covered by trees in Scenario 1, medium costs <u>Localization criteria</u>:

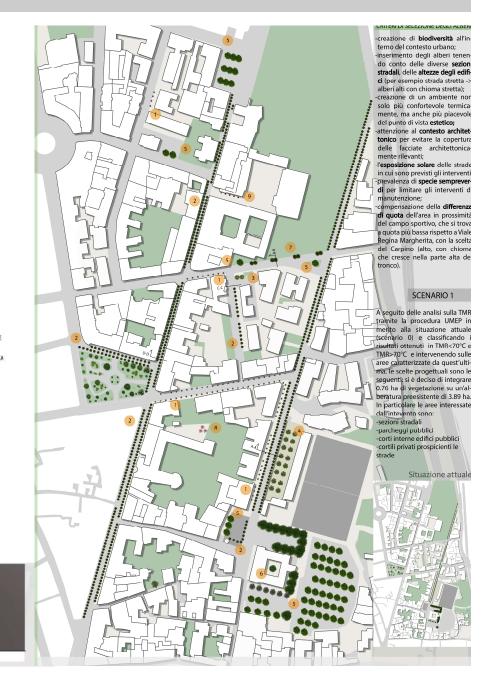
- beside buildings' facades
- *in public spaces/parking areas*
- *in private courtyards*

Simulating TMR – greenery scenarios

Considerations:

- Impact of new trees on overall
 TMR is visible but not dramatic
- Localized decrease (just below canopy)
- Limited mass effect of the canopy in reduction of TMR
- Economic resources for greenery to be concentrated in highly used streets and public spaces





Simulating TMR – low scale design scenarios

<u>Which tree goes where?</u> Suitability of tree species to be planted in highlighted areas in terms of:

- size at adult stage
- cost of deployment
- climate suitability
- endemic status

